Difference between revisions of "Value of polygamma at 1/2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)} \left( \dfrac{1}{2} \right) = (-1)^{m+1} m! \left( 2^{m+1}-1 \right) \zeta(m+1),$$ where $\psi^{(m)}...")
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at positive integer|next=}}: 6.4.4
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at positive integer|next=Value of polygamma at positive integer plus 1/2}}: 6.4.4
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 19:43, 11 June 2016

Theorem

The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)} \left( \dfrac{1}{2} \right) = (-1)^{m+1} m! \left( 2^{m+1}-1 \right) \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial, and $\zeta(m+1)$ denotes the Riemann zeta.

Proof

References