Difference between revisions of "Polygamma recurrence relation"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at positive integer plus 1/2|next=Polygamma reflection formula}}: 6.4.6 | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 19:52, 11 June 2016
Theorem
The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ where $\psi^{(m)}$ denotes the polygamma and $m!$ denotes the factorial.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 6.4.6