|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| + | The secant zeta functions $\psi_s$ are defined by |
| $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$ | | $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$ |
| | | |
| =Properties= | | =Properties= |
− | <div class="toccolours mw-collapsible mw-collapsed">
| + | [[Absolute convergence of secant zeta function]] |
− | <strong>Theorem:</strong> The series $\psi_s(z)$ converges absolutely in the following cases:
| |
− | # when $z=\dfrac{p}{q}$ with $q$ odd, $s>1$
| |
− | # when $z$ [[algebraic number| algebraic]] [[irrational number]] and $s >2$
| |
− | # when $z$ is algebraic irrational and $s=2$.
| |
− | <div class="mw-collapsible-content">
| |
− | <strong>Proof:</strong> █
| |
− | </div>
| |
− | </div>
| |
− | | |
− | <div class="toccolours mw-collapsible mw-collapsed">
| |
− | <strong>Theorem:</strong> Let $z$ be irrational, $k \geq \dfrac{1}{2}$, and $\dfrac{p}{q}$ be a rational approximation to $z$ in reduced form for which
| |
− | $$\left| z - \dfrac{p}{q} \right|< \dfrac{k}{q^2}.$$
| |
− | Then either $\dfrac{p}{q}$ is a [[convergent]] $\dfrac{p_{\ell}}{q_{\ell}}$ to $z$, or
| |
− | $$\dfrac{p}{q} = \dfrac{ap_{\ell}+bp_{\ell-1}}{aq_{\ell}+bq_{\ell-1}}; |a|,|b|<2k,$$
| |
− | where $a$ and $b$ are integers.
| |
− | <div class="mw-collapsible-content">
| |
− | <strong>Proof:</strong> █
| |
− | </div>
| |
− | </div>
| |
− | | |
| | | |
| =References= | | =References= |
Latest revision as of 06:10, 16 June 2016
The secant zeta functions $\psi_s$ are defined by
$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
Properties
Absolute convergence of secant zeta function
References