Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 14: Line 14:
 
[[Beta in terms of sine and cosine]]<br />
 
[[Beta in terms of sine and cosine]]<br />
 
[[Beta as improper integral]]<br />
 
[[Beta as improper integral]]<br />
 +
[[Beta is symmetric]]<br />
  
 
=Videos=
 
=Videos=

Revision as of 15:37, 23 June 2016

The beta function $B$ (note: $B$ is capital $\beta$ in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t.$$

Properties

Partial derivative of beta function
Beta in terms of gamma
Beta in terms of sine and cosine
Beta as improper integral
Beta is symmetric

Videos

Beta function - Part 1
Beta function
Beta integral function - basic identity
Gamma function - Part 10 - Beta function
Mod-04 Lec-09 Analytic continuation and the gamma function (Part I)
Gamma Function, Transformation of Gamma Function, Beta Function, Transformation of Beta Function
Beta Function - Gamma Function Relation Part 1
Beta Function - Gamma Function Relation Part 2
Beta Integral: Even Powers Of Sine Function

References