Difference between revisions of "Q-Cos"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The function $\mathrm{Cos}_q$ is defined by
 
The function $\mathrm{Cos}_q$ is defined by
 
$$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$
 
$$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]].
+
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]].
  
 
=Properties=
 
=Properties=
{{:q-Euler formula for E sub q}}
+
[[q-Euler formula for E sub q]]<br />
 +
[[q-derivative of q-Cosine]]<br />
 +
 
 +
=External links=
 +
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
  
 
=References=
 
=References=
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=q-Sin|next=Q-derivative of q-Sine}}: (6.169)
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 23:28, 26 June 2016

The function $\mathrm{Cos}_q$ is defined by $$\mathrm{Cos}_q(z)=\dfrac{E_q(iz)+E_q(-iz)}{2},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

q-Euler formula for E sub q
q-derivative of q-Cosine

External links

[1]

References