Difference between revisions of "Q-derivative of q-Cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$ where $D_q$ denotes the q-difference operator, $\mathrm{Cos}$ denotes the Q-...")
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$
 
$$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$
where $D_q$ denotes the [[q-difference operator]], $\mathrm{Cos}$ denotes the [[Q-Cos|$q$-Cosine function]], and $\mathrm{Sin}$ denotes the [[Q-Sin|$q$-Sine function]].
+
where $D_q$ denotes the [[q-derivative]], $\mathrm{Cos}$ denotes the [[Q-Cos|$q$-Cosine function]], and $\mathrm{Sin}$ denotes the [[Q-Sin|$q$-Sine function]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-derivative of q-Sine|next=findme}}: (6.171)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:29, 26 June 2016

Theorem

The following formula holds: $$D_q \mathrm{Cos}_q(az) = -a \mathrm{Sin}_q(az),$$ where $D_q$ denotes the q-derivative, $\mathrm{Cos}$ denotes the $q$-Cosine function, and $\mathrm{Sin}$ denotes the $q$-Sine function.

Proof

References