Difference between revisions of "Faber F1"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Faber function $F_1$ is defined by
 
The Faber function $F_1$ is defined by
 
$$F_1(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{10^k} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!} x -m \right|.$$
 
$$F_1(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{10^k} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!} x -m \right|.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Faberf1plot.png|Plot of $F_1$.
 +
</gallery>
 +
</div>
 +
 +
=Properties=
 +
[[Faber F1 is continuous]]<br />
 +
[[Faber F1 is nowhere differentiable]]<br />
  
 
=See Also=
 
=See Also=
[[Faber function F2]]
+
[[Faber F2]]
  
 
=References=
 
=References=
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]
 +
 +
{{:Continuous nowhere differentiable functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 03:32, 6 July 2016

The Faber function $F_1$ is defined by $$F_1(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{10^k} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!} x -m \right|.$$

Properties

Faber F1 is continuous
Faber F1 is nowhere differentiable

See Also

Faber F2

References

[1]

Continuous nowhere differentiable functions