Difference between revisions of "Faber F2"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Faber function $F_2$ is defined by
 
The Faber function $F_2$ is defined by
 
$$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$
 
$$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Faberf2plot.png|Graph of $F_2$.
 +
</gallery>
 +
</div>
 +
 +
=Properties=
 +
[[Faber F2 is continuous]]<br />
 +
[[Faber F2 is nowhere differentiable]]<br />
  
 
=See Also=
 
=See Also=
[[Faber function F1]]
+
[[Faber F1]]
 +
 
 +
=References=
 +
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]
 +
 
 +
{{:Continuous nowhere differentiable functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 03:32, 6 July 2016

The Faber function $F_2$ is defined by $$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$

Properties

Faber F2 is continuous
Faber F2 is nowhere differentiable

See Also

Faber F1

References

[1]

Continuous nowhere differentiable functions