Difference between revisions of "Faber F2"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Faber function $F_2$ is defined by | The Faber function $F_2$ is defined by | ||
$$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$ | $$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$ | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Faberf2plot.png|Graph of $F_2$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Faber F2 is continuous]]<br /> | ||
+ | [[Faber F2 is nowhere differentiable]]<br /> | ||
=See Also= | =See Also= | ||
− | [[Faber | + | [[Faber F1]] |
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] | ||
+ | |||
+ | {{:Continuous nowhere differentiable functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 03:32, 6 July 2016
The Faber function $F_2$ is defined by $$F_2(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!} \displaystyle\inf_{m \in \mathbb{Z}} \left|2^{k!}x-m \right|.$$
Properties
Faber F2 is continuous
Faber F2 is nowhere differentiable