Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
Line 11: Line 11:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
[[Category:SpecialFunction]]
+
 
 +
=Properties=
 +
 
 +
=References=
 +
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Kelvin ber|next=findme}}: $\S 7.2.3 (19)$
  
 
{{:Kelvin functions footer}}
 
{{:Kelvin functions footer}}
 +
 +
[[Category:SpecialFunction]]

Revision as of 22:17, 8 July 2016

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

Properties

References

Kelvin functions