Difference between revisions of "Q-cos sub q"
From specialfunctionswiki
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The function $\cos_q$ is defined by | + | __NOTOC__ |
− | $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2 | + | The function $\cos_q$ is defined for $|z|<1$ by |
+ | $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2},$$ | ||
where $e_q$ denotes the [[q-exponential e|$q$-exponential $e$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]]. | where $e_q$ denotes the [[q-exponential e|$q$-exponential $e$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]]. | ||
=Properties= | =Properties= | ||
− | + | [[q-Euler formula for e sub q]]<br /> | |
+ | |||
+ | =External links= | ||
+ | [http://homepage.tudelft.nl/11r49/documents/as98.pdf] | ||
=References= | =References= | ||
− | + | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=q-sin sub q|next=}}: $(6.202)$ | |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 15:37, 11 July 2016
The function $\cos_q$ is defined for $|z|<1$ by $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2},$$ where $e_q$ denotes the $q$-exponential $e$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.
Properties
External links
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous): $(6.202)$