Difference between revisions of "Q-cos sub q"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Q-cos to Q-cos sub q)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The function $\cos_q$ is defined by
+
The function $\cos_q$ is defined for $|z|<1$ by
$$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$
+
$$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2},$$
 
where $e_q$ denotes the [[q-exponential e|$q$-exponential $e$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]].
 
where $e_q$ denotes the [[q-exponential e|$q$-exponential $e$]] and $(q;q)_{2k}$ denotes the [[q-Pochhammer|$q$-Pochhammer symbol]].
  
Line 11: Line 11:
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=q-sin|next=}}: $(6.202)$
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=q-sin sub q|next=}}: $(6.202)$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 15:37, 11 July 2016

The function $\cos_q$ is defined for $|z|<1$ by $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2},$$ where $e_q$ denotes the $q$-exponential $e$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.

Properties

q-Euler formula for e sub q

External links

[1]

References