Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$. =Properties=...")
 
(Properties)
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The function $\mathrm{Sin}_q$ is defined by
 
The function $\mathrm{Sin}_q$ is defined by
 
$$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$
 
$$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]].
+
where $E_q$ denotes the [[q-exponential E sub q|$q$-exponential $E_q$]].
  
 
=Properties=
 
=Properties=
{{:q-Euler formula for E sub q}}
+
[[q-Euler formula for E sub q]]<br />
 +
[[q-derivative of q-Sine]]<br />
 +
 
 +
=External links=
 +
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
  
 
=References=
 
=References=
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-Cos}}: (6.168)
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 00:49, 15 September 2016

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E_q$.

Properties

q-Euler formula for E sub q
q-derivative of q-Sine

External links

[1]

References