Difference between revisions of "Beta in terms of gamma"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Beta in terms of gamma|Theorem]]:</strong> The following formula holds:  
+
The following formula holds:  
 
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
 
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
where $B$ denotes the [[beta]] and $\Gamma$ denotes the [[gamma function]].  
+
where $B$ denotes the [[beta]] function and $\Gamma$ denotes the [[gamma]] function.  
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Beta in terms of sine and cosine|next=Beta is symmetric}}: $6.2.2$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 15:10, 6 October 2016

Theorem

The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $B$ denotes the beta function and $\Gamma$ denotes the gamma function.

Proof

References