Difference between revisions of "Möbius"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "a")
 
(Videos)
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
a
+
__NOTOC__
 +
The Möbius function is the function $\mu$ defined by the formula
 +
$$\mu(n) = \left\{ \begin{array}{ll}
 +
1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}even\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\
 +
-1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}odd\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\
 +
0 &; n\mathrm{\hspace{2pt}has\hspace{2pt}a\hspace{2pt}square\hspace{2pt}divisor}.
 +
\end{array} \right.$$
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Mobiusplot,on0to40.png|Graph of $\mu$ on $[0,40]$.
 +
File:Mobiusplot,on0to100.png|Graph of $\mu$ on $[0,100]$.
 +
</gallery>
 +
</div>
 +
 
 +
 
 +
=Properties=
 +
[[Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1]]<br />
 +
[[Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta]]<br />
 +
 
 +
=Videos=
 +
[https://youtu.be/zlRm1Lnz6fg?t=10 Möbius Function - Introduction (4 September 2007)]<br />
 +
[https://www.youtube.com/watch?v=yiyuu9HiXUI Möbius Function - Merten's function (4 September 2007)]<br />
 +
[https://www.youtube.com/watch?v=9Y5xokbMBSM Mobius Function Example (17 November 2012)]<br />
 +
[https://www.youtube.com/watch?v=LyyLE5ROPXA Number Theory 27: Mobius function is multiplicative (8 January 2015)]<br />
 +
[https://www.youtube.com/watch?v=Vsib1v5vfkc Möbius Inversion of $\zeta(s)$ (3 July 2016)]<br />
 +
 
 +
=References=
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1}}: $24.3.1 \mathrm{I}.A.$
 +
 
 +
{{:Number theory functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 23:55, 8 December 2016

The Möbius function is the function $\mu$ defined by the formula $$\mu(n) = \left\{ \begin{array}{ll} 1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}even\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ -1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}odd\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ 0 &; n\mathrm{\hspace{2pt}has\hspace{2pt}a\hspace{2pt}square\hspace{2pt}divisor}. \end{array} \right.$$


Properties

Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1
Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta

Videos

Möbius Function - Introduction (4 September 2007)
Möbius Function - Merten's function (4 September 2007)
Mobius Function Example (17 November 2012)
Number Theory 27: Mobius function is multiplicative (8 January 2015)
Möbius Inversion of $\zeta(s)$ (3 July 2016)

References

Number theory functions