Difference between revisions of "Möbius"
(→Videos) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
The Möbius function is the function $\mu$ defined by the formula | The Möbius function is the function $\mu$ defined by the formula | ||
$$\mu(n) = \left\{ \begin{array}{ll} | $$\mu(n) = \left\{ \begin{array}{ll} | ||
Line 19: | Line 20: | ||
=Videos= | =Videos= | ||
− | [https:// | + | [https://youtu.be/zlRm1Lnz6fg?t=10 Möbius Function - Introduction (4 September 2007)]<br /> |
− | [https:// | + | [https://www.youtube.com/watch?v=yiyuu9HiXUI Möbius Function - Merten's function (4 September 2007)]<br /> |
− | [https://www.youtube.com/watch?v= | + | [https://www.youtube.com/watch?v=9Y5xokbMBSM Mobius Function Example (17 November 2012)]<br /> |
− | [https://www.youtube.com/watch?v=LyyLE5ROPXA Number Theory 27: Mobius function is multiplicative]<br /> | + | [https://www.youtube.com/watch?v=LyyLE5ROPXA Number Theory 27: Mobius function is multiplicative (8 January 2015)]<br /> |
+ | [https://www.youtube.com/watch?v=Vsib1v5vfkc Möbius Inversion of $\zeta(s)$ (3 July 2016)]<br /> | ||
=References= | =References= | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1}}: $24.3.1 \mathrm{I}.A.$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1}}: $24.3.1 \mathrm{I}.A.$ | ||
+ | |||
+ | {{:Number theory functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 23:55, 8 December 2016
The Möbius function is the function $\mu$ defined by the formula $$\mu(n) = \left\{ \begin{array}{ll} 1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}even\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ -1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}odd\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ 0 &; n\mathrm{\hspace{2pt}has\hspace{2pt}a\hspace{2pt}square\hspace{2pt}divisor}. \end{array} \right.$$
Properties
Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1
Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta
Videos
Möbius Function - Introduction (4 September 2007)
Möbius Function - Merten's function (4 September 2007)
Mobius Function Example (17 November 2012)
Number Theory 27: Mobius function is multiplicative (8 January 2015)
Möbius Inversion of $\zeta(s)$ (3 July 2016)
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $24.3.1 \mathrm{I}.A.$