Difference between revisions of "Ramanujan tau"
From specialfunctionswiki
Line 11: | Line 11: | ||
=Properties= | =Properties= | ||
[[Ramanujan tau is multiplicative]]<br /> | [[Ramanujan tau is multiplicative]]<br /> | ||
− | [[Ramanujan tau of a power]]<br /> | + | [[Ramanujan tau of a power of a prime]]<br /> |
[[Ramanujan tau inequality]]<br /> | [[Ramanujan tau inequality]]<br /> | ||
Latest revision as of 00:53, 23 December 2016
The Ramanujan tau function $\tau \colon \mathbb{N} \rightarrow \mathbb{Z}$ is defined by the formulas $$\displaystyle\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \eta(z)^{24}=\Delta(z),$$ where $q=e^{2\pi i z}$ with $\mathrm{Re}(z)>0$, $\eta$ denotes the Dedekind eta function, and $\Delta$ denotes the discriminant modular form.
Properties
Ramanujan tau is multiplicative
Ramanujan tau of a power of a prime
Ramanujan tau inequality