Difference between revisions of "Q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The $E_{\frac{1}{q}}$ function is defined by the formula
 
The $E_{\frac{1}{q}}$ function is defined by the formula
$$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$
+
$$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[q-exponential E sub q in terms of binomial coefficient]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Q-difference equation for q-exponential E sub 1/q]]<br />
$$D_q E_{\frac{1}{q}}(az)=aE_{\frac{1}{q}}(qaz),$$
+
 
where $D_q$ denotes the [[q-difference operator]] and $E_{\frac{1}{q}}$ denotes the [[Q-exponential E sub 1/q|$q$-exponential $E_{\frac{1}{q}}$]].
+
=See Also=
<div class="mw-collapsible-content">
+
[[Q-exponential E sub q]]<br />
<strong>Proof:</strong> █
+
 
</div>
+
=References=
</div>
+
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(9.10)$ (calls $E_{\frac{1}{q}}(x)$ $E_q^x$)
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub q|next=Q-difference equation for q-exponential E sub 1/q}}: ($6.153$)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 04:30, 26 December 2016

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$

Properties

q-exponential E sub q in terms of binomial coefficient
Q-difference equation for q-exponential E sub 1/q

See Also

Q-exponential E sub q

References