Difference between revisions of "Harmonic number"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Harmonic numbers $\{ | + | The Harmonic numbers $\{H_1,H_2,\ldots\}$ are defined by the formula |
− | $$H_n = \displaystyle\sum_{k= | + | $$H_n = \displaystyle\sum_{k=1}^n \dfrac{1}{k}=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n}.$$ |
+ | |||
+ | =Properties= | ||
=References= | =References= | ||
+ | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=Euler-Mascheroni constant|next=findme}}: $7.(2)$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 03:12, 5 January 2017
The Harmonic numbers $\{H_1,H_2,\ldots\}$ are defined by the formula $$H_n = \displaystyle\sum_{k=1}^n \dfrac{1}{k}=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n}.$$
Properties
References
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $7.(2)$