Difference between revisions of "Euler-Mascheroni constant"
From specialfunctionswiki
Line 23: | Line 23: | ||
* {{BookReference|A course of modern analysis|1920|Edmund Taylor Whittaker|author2=George Neville Watson|edpage=Third edition|prev=Gamma|next=Reciprocal gamma written as an infinite product}}: $\S 12 \cdot 1$ | * {{BookReference|A course of modern analysis|1920|Edmund Taylor Whittaker|author2=George Neville Watson|edpage=Third edition|prev=Gamma|next=Reciprocal gamma written as an infinite product}}: $\S 12 \cdot 1$ | ||
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=findme}}: §1.1 (4) | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=findme}}: §1.1 (4) | ||
− | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Harmonic number}}: $(1)$ | + | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Harmonic number}}: $7.(1)$ |
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3 | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3 |
Revision as of 03:12, 5 January 2017
The Euler-Mascheroni constant is the number $\gamma$ defined by the formula $$\gamma = \lim_{n \rightarrow \infty} H_n-\log(n) = 0.577215664901532 \ldots,$$ where $H_n$ denotes the $n$th harmonic number.
Properties
The Euler-Mascheroni constant exists
Reciprocal gamma written as an infinite product
Exponential integral Ei series
Further properties
The Euler-Mascheroni constant appears in the definition of...
- the hyperbolic cosine integral
- the Barnes G function
See Also
External links
Collection of formulae for Euler's constant g
References
- 1920: Edmund Taylor Whittaker and George Neville Watson: A course of modern analysis ... (previous) ... (next): $\S 12 \cdot 1$
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): §1.1 (4)
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $7.(1)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 6.1.3