Difference between revisions of "Value of polygamma at positive integer"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ where $\psi^{(m)}$ denote...") |
(→References) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | The following formula holds: | + | The following formula holds for $n=1,2,\ldots$: |
$$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ | $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]], and $\zeta(m+1)$ denotes the [[Riemann zeta]]. | where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]], and $\zeta(m+1)$ denotes the [[Riemann zeta]]. | ||
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=}}: 6.4.3 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=Value of polygamma at 1/2}}: $6.4.3$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:45, 17 March 2017
Theorem
The following formula holds for $n=1,2,\ldots$: $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial, and $\zeta(m+1)$ denotes the Riemann zeta.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.4.3$