Difference between revisions of "Value of polygamma at positive integer"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=Value of polygamma at 1/2}}: 6.4.3
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=Value of polygamma at 1/2}}: $6.4.3$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:45, 17 March 2017

Theorem

The following formula holds for $n=1,2,\ldots$: $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial, and $\zeta(m+1)$ denotes the Riemann zeta.

Proof

References