Difference between revisions of "Polygamma recurrence relation"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\...") |
(→References) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ | $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]]. | where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of derivative of trigamma at positive integer plus 1/2|next=Polygamma reflection formula}}: $6.4.6$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:46, 17 March 2017
Theorem
The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ where $\psi^{(m)}$ denotes the polygamma and $m!$ denotes the factorial.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.4.6$