Difference between revisions of "Polygamma recurrence relation"
From specialfunctionswiki
(→References) |
|||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of derivative of trigamma at positive integer plus 1/2|next=Polygamma reflection formula}}: $6.4.6$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:46, 17 March 2017
Theorem
The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ where $\psi^{(m)}$ denotes the polygamma and $m!$ denotes the factorial.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.4.6$