Difference between revisions of "Schwarz function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Define $\varphi(x)=\lfloor x \rfloor + \sqrt{x-\lfloor x \rfloor}$, where $\lfloor \cdot \rfloor$ denotes the floor function and let $M>0$. The Schwarz function $S \colon...")
 
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Schwarz function is continuous]]<br />
<strong>Theorem:</strong> Let $M>0$. The Schwarz function is [[continuous]] on $(0,M)$.
+
[[Schwarz function is nowhere differentiable on a dense subset]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=References=
<strong>Theorem:</strong> Let $M>0$. The Schwarz function is [[nowhere differentiable]] on a [[dense]] subset of $(0,M)$.
+
* {{BookReference|Continuous Nowhere Differentiable Functions|2003|Johan Thim|prev=Darboux function|next=findme}} $\S 3.5$, pg. 28
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
=References=
+
[[Category:SpecialFunction]]
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 

Latest revision as of 18:03, 25 June 2017

Define $\varphi(x)=\lfloor x \rfloor + \sqrt{x-\lfloor x \rfloor}$, where $\lfloor \cdot \rfloor$ denotes the floor function and let $M>0$. The Schwarz function $S \colon (0,M) \rightarrow \mathbb{R}$ is defined by $$S(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\varphi(2^k x)}{4^k}.$$

Properties

Schwarz function is continuous
Schwarz function is nowhere differentiable on a dense subset

References