Difference between revisions of "Pythagorean identity for sinh and cosh"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cosh^2(z)-\sinh^2(z)=1,$$ where $\cosh$ denotes the cosh|hyper...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\cosh^2(z)-\sinh^2(z)=1,$$ | $$\cosh^2(z)-\sinh^2(z)=1,$$ | ||
where $\cosh$ denotes the [[cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | where $\cosh$ denotes the [[cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | From the definitions | |
− | + | $$\cosh(z)=\dfrac{e^{z}+e^{-z}}{2}$$ | |
+ | and | ||
+ | $$\sinh(z)=\dfrac{e^{z}-e^{-z}}{2},$$ | ||
+ | we see | ||
+ | $$\begin{array}{ll} | ||
+ | \cosh^2(z) - \sinh^2(z) &= \left( \dfrac{e^{z}+e^{-z}}{2} \right)^2 - \left( \dfrac{e^{z}-e^{-z}}{2} \right)^2 \\ | ||
+ | &= \dfrac{1}{4} \left( e^{2z}+2+e^{-2z}-e^{2z}+2-e^{-2z} \right) \\ | ||
+ | &= 1, | ||
+ | \end{array}$$ | ||
+ | as was to be shown. █ | ||
+ | |||
+ | ==References== | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Period of tanh|next=Pythagorean identity for tanh and sech}}: $4.5.16$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Proven]] |
Latest revision as of 22:25, 21 October 2017
Theorem
The following formula holds: $$\cosh^2(z)-\sinh^2(z)=1,$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.
Proof
From the definitions $$\cosh(z)=\dfrac{e^{z}+e^{-z}}{2}$$ and $$\sinh(z)=\dfrac{e^{z}-e^{-z}}{2},$$ we see $$\begin{array}{ll} \cosh^2(z) - \sinh^2(z) &= \left( \dfrac{e^{z}+e^{-z}}{2} \right)^2 - \left( \dfrac{e^{z}-e^{-z}}{2} \right)^2 \\ &= \dfrac{1}{4} \left( e^{2z}+2+e^{-2z}-e^{2z}+2-e^{-2z} \right) \\ &= 1, \end{array}$$ as was to be shown. █
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.16$