Difference between revisions of "Halving identity for cosh"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\cosh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)+1}{2} },$$ where $\cosh$ denotes hyperbolic cosine. ==Proof==...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for sinh|next=Halving identity for tangent}}: $4.5.29$ | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for sinh|next=Halving identity for tangent (1)}}: $4.5.29$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:46, 21 October 2017
Theorem
The following formula holds: $$\cosh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)+1}{2} },$$ where $\cosh$ denotes hyperbolic cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.29$