Difference between revisions of "Halving identity for cosh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\cosh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)+1}{2} },$$ where $\cosh$ denotes hyperbolic cosine. ==Proof==...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for sinh|next=Halving identity for tangent}}: $4.5.29$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for sinh|next=Halving identity for tangent (1)}}: $4.5.29$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:46, 21 October 2017

Theorem

The following formula holds: $$\cosh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)+1}{2} },$$ where $\cosh$ denotes hyperbolic cosine.

Proof

References