Difference between revisions of "Sech"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(One intermediate revision by the same user not shown)
Line 15: Line 15:
 
[[Relationship between cosine, Gudermannian, and sech]]<br />
 
[[Relationship between cosine, Gudermannian, and sech]]<br />
 
[[Relationship between sech, inverse Gudermannian, and cos]]<br />
 
[[Relationship between sech, inverse Gudermannian, and cos]]<br />
 +
[[Pythagorean identity for tanh and sech]]<br />
  
 
=See Also=
 
=See Also=
Line 20: Line 21:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Csch|next=Coth}}: 4.5.5
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Csch|next=Coth}}: $4.5.5$
  
 
{{:Hyperbolic trigonometric functions footer}}
 
{{:Hyperbolic trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 23:35, 21 October 2017

The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by $$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)},$$ where $\cosh(z)$ denotes the hyperbolic cosine. Since this function is not one-to-one, we define the inverse hyperbolic secant function as the inverse function of $\mathrm{sech}$ restricted to $[0,\infty)$.

Properties

Derivative of sech
Antiderivative of sech
Relationship between cosine, Gudermannian, and sech
Relationship between sech, inverse Gudermannian, and cos
Pythagorean identity for tanh and sech

See Also

Arcsech

References

Hyperbolic trigonometric functions