Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Struve functions are defined by
 
The Struve functions are defined by
$$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}.$$
+
$$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$
  
 
<div align="center">
 
<div align="center">
Line 17: Line 17:
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_496.htm Struve functions in Abramowitz&Stegun]
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Struve H0}}: $12.1.3$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 22:40, 31 October 2017

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$


Properties

Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1

References