Difference between revisions of "D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \left[ z^{\nu}\mathbf{H}_{\nu}(z) \right]=z^{\nu}\mathbf{H}_{\nu-1}(z),$$ where $\mathbf{H}$ denotes...") |
m (Tom moved page D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1) to D/dz(z^(nu)H (nu))=z^(nu)H (nu-1) without leaving a redirect) |
(No difference)
|
Latest revision as of 00:50, 21 December 2017
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \left[ z^{\nu}\mathbf{H}_{\nu}(z) \right]=z^{\nu}\mathbf{H}_{\nu-1}(z),$$ where $\mathbf{H}$ denotes a Struve function.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $12.1.12$