Difference between revisions of "Kelvin ber"
From specialfunctionswiki
(Created page with "The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Re} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of...") |
|||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The $\mathrm{ber}_{\nu}$ function is defined as | The $\mathrm{ber}_{\nu}$ function is defined as | ||
− | $$\mathrm{ber}(z)=\mathrm{Re} J_{\nu} \left( | + | $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ |
− | where $\mathrm{Re}$ denotes the [[real part]] of a complex number and $J_{\nu}$ denotes the [[Bessel J | + | where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]]. |
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Kelvinber,n=0plot.png|Graph of $\mathrm{ber}_0$. | ||
+ | File:Kelvinber,n=0.5plot.png|Graph of $\mathrm{ber}_{\frac{1}{2}}$. | ||
+ | File:Kelvinber,n=1plot.png|Graph of $\mathrm{ber}_1$. | ||
+ | File:Kelvinber,n=2plot.png|Graph of $\mathrm{ber}_2$. | ||
+ | File:Complexkelvinber,n=0plot.png|[[Domain coloring]] of $\mathrm{ber}_0$. | ||
+ | File:Complexkelvinber,n=1plot.png|[[Domain coloring]] of $\mathrm{ber}_1$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume II|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Kelvin bei}}: $\S 7.2.3 (19)$ | ||
+ | |||
+ | [[Category:SpecialFunction]] | ||
+ | |||
+ | {{:Kelvin functions footer}} |
Latest revision as of 05:41, 4 March 2018
The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{ber}_0$.
Domain coloring of $\mathrm{ber}_1$.
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume II ... (previous) ... (next): $\S 7.2.3 (19)$