Difference between revisions of "Book:Arthur Erdélyi/Higher Transcendental Functions Volume II"
From specialfunctionswiki
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | {{Book|Higher Transcendental Functions, Volume | + | {{Book|Higher Transcendental Functions, Volume II|1953|Dover Publications|0-486-44614-X|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi}} |
===Online mirrors=== | ===Online mirrors=== | ||
Line 13: | Line 13: | ||
:::7.2. Bessel's differential equation | :::7.2. Bessel's differential equation | ||
::::7.2.1. Bessel functions of general order | ::::7.2.1. Bessel functions of general order | ||
+ | :::::(1) | ||
+ | :::::[[Bessel J|(2)]] | ||
+ | :::::(3) | ||
+ | :::::(4) | ||
+ | :::::(5) | ||
+ | :::::(6) | ||
+ | :::::(7) | ||
+ | :::::(8) | ||
+ | :::::(9) | ||
+ | :::::(10) | ||
+ | ::::7.2.2. Modified Bessel functions of general order | ||
::::7.2.3. Kelvin's function and related functions | ::::7.2.3. Kelvin's function and related functions | ||
+ | :::::[[Kelvin ber|(19)]] (and [[Kelvin bei|(19)]]) | ||
+ | :::::[[Kelvin ker|(20)]] (and [[Kelvin kei|(20)]]) | ||
::::7.2.4. Bessel functions of integer order | ::::7.2.4. Bessel functions of integer order | ||
::::7.2.5. Modified Bessel functions of integer order | ::::7.2.5. Modified Bessel functions of integer order | ||
Line 71: | Line 84: | ||
:::7.15. Series of Bessel functions | :::7.15. Series of Bessel functions | ||
:::References | :::References | ||
− | [[Category: | + | :CHAPTER VIII FUNCTIONS OF THE PARABOLIC CYLINDER AND OF THE PARABOLOID OF REVOLUTION |
+ | :::8.1. Introduction | ||
+ | ::PARABOLIC CYLINDER FUNCTIONS | ||
+ | :::8.2. Definitions and elementary properties | ||
+ | :::8.3. Integral representations and integrals | ||
+ | :::8.4. Asymptotic expansions | ||
+ | :::8.5 Representation of functions in terms of the $D_{\nu}(x)$ | ||
+ | ::::8.5.1. Series | ||
+ | ::::8.5.2. Representation by integrals with respect to the parameter | ||
+ | :::8.6 Zeros and descriptive properties | ||
+ | ::FUNCTIONS OF THE PARABOLOID OF REVOLUTION | ||
+ | :::8.7 The solutions of a particular confluent hypergeometric equation | ||
+ | :::8.8 Integrals and series involving functions of the paraboloid of revolution | ||
+ | :CHAPTER IX THE INCOMPLETE GAMMA FUNCTIONS AND RELATED FUNCTIONS | ||
+ | :::9.1. Introduction | ||
+ | ::THE INCOMPLETE GAMMA FUNCTIONS | ||
+ | :::9.2. Definitions and elementary properties | ||
+ | ::::9.2.1. The case of integer $a$ | ||
+ | :::9.3. Integral representations and integral formulas | ||
+ | :::9.4. Series | ||
+ | :::9.5. Asymptotic representations | ||
+ | :::9.6. Zeros and descriptive properties | ||
+ | ::SPECIAL INCOMPLETE GAMMA FUNCTIONS | ||
+ | :::9.7. The exponential and logarithmic integral | ||
+ | :::9.8. Sine and cosine integrals | ||
+ | :::9.9. The error functions | ||
+ | :::9.10. Fresenel integrals and generalizations | ||
+ | :::References | ||
+ | :CHAPTER X ORTHOGONAL POLYNOMIALS | ||
+ | :::10.1. Systems of orthogonal functions | ||
+ | :::10.2. The approximation problem | ||
+ | :::10.3. General properties of orthogonal polynomials | ||
+ | :::10.4. Mechanical quadrature | ||
+ | :::10.5. Continued fractions | ||
+ | :::10.6. The classical polynomials | ||
+ | :::10.7. General properties of the classical orthogonal polynomials | ||
+ | :::10.8. Jacobi polynomials | ||
+ | :::10.9. Gegenbauer polynomials | ||
+ | :::10.10. Legendre polynomials | ||
+ | :::10.11. Tchebichef polynomials | ||
+ | :::10.12. Laguerre polynomials | ||
+ | :::10.13. Hermite polynomials | ||
+ | :::10.14. Asymptotic behavior of Jacobi, Gegenbauer and Legendre polynomials | ||
+ | :::10.15. Zeros of Jacobi and related polynomials | ||
+ | :::10.16. Zeros of Laguerre and Hermite polynomials | ||
+ | :::10.17. Zeros of Laguerre and Hermite polynomials | ||
+ | :::10.18. Inequalities for the classical polynomials | ||
+ | :::10.19. Expansion problems | ||
+ | :::10.20. Examples of expansions | ||
+ | :::10.21. Some classes of orthogonal polynomials | ||
+ | :::10.22. Orthogonal polynomials of a discrete variable | ||
+ | :::10.23. Tchebichef's polynomials of a discrete variable and their generalizations | ||
+ | :::10.24. Krawtchouk's and related polynomials | ||
+ | :::10.25 Charlier's polynomials | ||
+ | :::References | ||
+ | |||
+ | ===See also=== | ||
+ | [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume I]]<br /> | ||
+ | [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume III]]<br /> | ||
+ | |||
+ | [[Category:Book]] |
Latest revision as of 05:44, 4 March 2018
Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions, Volume II
Published $1953$, Dover Publications
- ISBN 0-486-44614-X.
Online mirrors
Contents
- FOREWARD
- CHAPTER VII BESSEL FUNCTIONS
- FIRST PART: THEORY
- 7.1. Introduction
- 7.2. Bessel's differential equation
- 7.2.1. Bessel functions of general order
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (8)
- (9)
- (10)
- 7.2.2. Modified Bessel functions of general order
- 7.2.3. Kelvin's function and related functions
- 7.2.4. Bessel functions of integer order
- 7.2.5. Modified Bessel functions of integer order
- 7.2.6. Spherical Bessel functions
- 7.2.7. Products of Bessel functions
- 7.2.8. Miscellaneous results
- 7.2.1. Bessel functions of general order
- 7.3. Integral representations
- 7.3.1. Bessel coefficients
- 7.3.2. Integral representations of the Poisson type
- 7.3.3. Representations by loop integrals
- 7.3.4. Shläfli's, Gubler's, Sonine's and related integrals
- 7.3.5. Sommerfeld's integrals
- 7.3.6. Barnes' integrals
- 7.3.7. Airy's integrals
- 7.4. Asymptotic expansions
- 7.4.1. Large variable
- 7.4.2. Large order
- 7.4.3. Transitional regions
- 7.4.4. Uniform asymptotic expansions
- 7.5. Related functions
- 7.5.1. Neumann's and related polynomials
- 7.5.2. Lommel's poylnomials
- 7.5.3. Anger-Weber functions
- 7.5.4. Struves' functions
- 7.5.5. Lommel's functions
- 7.5.6. Some other notations and related functions
- 7.6. Addition theorems
- 7.6.1. Gegenbauer's addition theorem
- 7.6.2. Graf's addition theorem
- 7.7. Integral formulas
- 7.7.1. Indefinite integrals
- 7.7.2. Finite integrals
- 7.7.3. Infinite integrals with exponential functions
- 7.7.4. The discontinuous integral of Weber and Schafheitlin
- 7.7.5. Sonine and Gegenbauer's integrals and generalizations
- 7.7.6. Macdonald's and Nicholson's formulas
- 7.7.7. Integrals with respect to order
- 7.8. Relations between Bessel and Legendre functions
- 7.9. Zeros of the Bessel functions
- 7.10. Series and integral representations of arbitrary functions
- 7.10.1. Neumann's series
- 7.10.2. Kapteyn series
- 7.10.3. Schlömilch series
- 7.10.4. Fourier-Bessel and Dini series
- 7.10.5. Integral representations of arbitrary functions
- SECOND PART: FORMULAS
- 7.11. Elementary relations and miscellaneous formulas
- 7.12. Integral representations
- 7.13. Asymptotic expansions
- 7.13.1. Large variable
- 7.13.2. Large order
- 7.13.3. Transitional regions
- 7.13.4. Uniform asymptotic expansions
- 7.14. Integral formulas
- 7.14.1. Finite integrals
- 7.14.2. Infinite integrals
- 7.15. Series of Bessel functions
- References
- FIRST PART: THEORY
- CHAPTER VIII FUNCTIONS OF THE PARABOLIC CYLINDER AND OF THE PARABOLOID OF REVOLUTION
- 8.1. Introduction
- PARABOLIC CYLINDER FUNCTIONS
- 8.2. Definitions and elementary properties
- 8.3. Integral representations and integrals
- 8.4. Asymptotic expansions
- 8.5 Representation of functions in terms of the $D_{\nu}(x)$
- 8.5.1. Series
- 8.5.2. Representation by integrals with respect to the parameter
- 8.6 Zeros and descriptive properties
- FUNCTIONS OF THE PARABOLOID OF REVOLUTION
- 8.7 The solutions of a particular confluent hypergeometric equation
- 8.8 Integrals and series involving functions of the paraboloid of revolution
- CHAPTER IX THE INCOMPLETE GAMMA FUNCTIONS AND RELATED FUNCTIONS
- 9.1. Introduction
- THE INCOMPLETE GAMMA FUNCTIONS
- 9.2. Definitions and elementary properties
- 9.2.1. The case of integer $a$
- 9.3. Integral representations and integral formulas
- 9.4. Series
- 9.5. Asymptotic representations
- 9.6. Zeros and descriptive properties
- 9.2. Definitions and elementary properties
- SPECIAL INCOMPLETE GAMMA FUNCTIONS
- 9.7. The exponential and logarithmic integral
- 9.8. Sine and cosine integrals
- 9.9. The error functions
- 9.10. Fresenel integrals and generalizations
- References
- CHAPTER X ORTHOGONAL POLYNOMIALS
- 10.1. Systems of orthogonal functions
- 10.2. The approximation problem
- 10.3. General properties of orthogonal polynomials
- 10.4. Mechanical quadrature
- 10.5. Continued fractions
- 10.6. The classical polynomials
- 10.7. General properties of the classical orthogonal polynomials
- 10.8. Jacobi polynomials
- 10.9. Gegenbauer polynomials
- 10.10. Legendre polynomials
- 10.11. Tchebichef polynomials
- 10.12. Laguerre polynomials
- 10.13. Hermite polynomials
- 10.14. Asymptotic behavior of Jacobi, Gegenbauer and Legendre polynomials
- 10.15. Zeros of Jacobi and related polynomials
- 10.16. Zeros of Laguerre and Hermite polynomials
- 10.17. Zeros of Laguerre and Hermite polynomials
- 10.18. Inequalities for the classical polynomials
- 10.19. Expansion problems
- 10.20. Examples of expansions
- 10.21. Some classes of orthogonal polynomials
- 10.22. Orthogonal polynomials of a discrete variable
- 10.23. Tchebichef's polynomials of a discrete variable and their generalizations
- 10.24. Krawtchouk's and related polynomials
- 10.25 Charlier's polynomials
- References
See also
Book:Arthur Erdélyi/Higher Transcendental Functions Volume I
Book:Arthur Erdélyi/Higher Transcendental Functions Volume III