Difference between revisions of "Chebyshev T"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Chebyshev polynomials of the first kind are [[orthogonal polynomials]] defined for $n=0,1,2,\ldots$ by
+
Chebyshev polynomials of the first kind are [[orthogonal polynomials]] defined for $n=0,1,2,\ldots$ and $-1 \leq x \leq 1$ by
 
$$T_n(x) = \cos(n \mathrm{arccos}(x)),$$
 
$$T_n(x) = \cos(n \mathrm{arccos}(x)),$$
 
where $\cos$ denotes [[cosine]] and $\mathrm{arccos}$ denotes [[arccos]].
 
where $\cos$ denotes [[cosine]] and $\mathrm{arccos}$ denotes [[arccos]].
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
[[T_(n+1)(x)-2xT_n(x)+T_(n-1)(x)=0]]<br />
 
[[T_(n+1)(x)-2xT_n(x)+T_(n-1)(x)=0]]<br />
[[Orthogonality of Chebyshev T on (-1,1)]]
+
[[Orthogonality of Chebyshev T on (-1,1)]]<br />
 +
[[Relationship between Chebyshev T and hypergeometric 2F1]]<br />
 +
[[Relationship between Chebyshev T and Gegenbauer C]]<br />
 +
[[T n(x)=(1/2)(x+i sqrt(1-x^2))^n+(1/2)(x-i sqrt(1-x^2))^n]]<br />
 +
[[T n(x)=Sum (-1)^k n!/((2k)! (n-2k)!) (1-x^2)^k x^(n-2k)]]<br />
  
{{:Relationship between Chebyshev T and hypergeometric 2F1}}
+
=References=
 
+
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=findme|next=Chebyshev U}}: $(7.1)$
{{:Relationship between Chebyshev T and Gegenbauer C}}
+
* {{BookReference|An Introduction to Orthogonal Polynomials|1978|T.S. Chihara|prev=Orthogonality of Chebyshev T on (-1,1)|next=findme}} $(1.4)$ (<i>note: calls them Tchebichef polynomials of the first kind</i>)
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 19:33, 15 March 2018

Chebyshev polynomials of the first kind are orthogonal polynomials defined for $n=0,1,2,\ldots$ and $-1 \leq x \leq 1$ by $$T_n(x) = \cos(n \mathrm{arccos}(x)),$$ where $\cos$ denotes cosine and $\mathrm{arccos}$ denotes arccos.

Properties

T_(n+1)(x)-2xT_n(x)+T_(n-1)(x)=0
Orthogonality of Chebyshev T on (-1,1)
Relationship between Chebyshev T and hypergeometric 2F1
Relationship between Chebyshev T and Gegenbauer C
T n(x)=(1/2)(x+i sqrt(1-x^2))^n+(1/2)(x-i sqrt(1-x^2))^n
T n(x)=Sum (-1)^k n!/((2k)! (n-2k)!) (1-x^2)^k x^(n-2k)

References

Orthogonal polynomials