Difference between revisions of "Secant zeta function"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$
+
The secant zeta functions $\psi_s$ are defined by
 +
$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
 +
 
 +
=Properties=
 +
[[Absolute convergence of secant zeta function]]
  
 
=References=
 
=References=
[http://arxiv.org/pdf/1304.3922.pdf Secant zeta functions]
+
* {{PaperReference|Secant zeta functions|2014|Matilde Lalín}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 06:10, 16 June 2016

The secant zeta functions $\psi_s$ are defined by $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$

Properties

Absolute convergence of secant zeta function

References