Difference between revisions of "Euler-Mascheroni constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "$$\gamma = \lim_{n \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{n}-\log(n) = 0.577215664901532$$")
 
 
(23 intermediate revisions by the same user not shown)
Line 1: Line 1:
$$\gamma = \lim_{n \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{n}-\log(n) = 0.577215664901532$$
+
__NOTOC__
 +
The Euler-Mascheroni constant is the number $\gamma$ defined by the formula
 +
$$\gamma = \lim_{n \rightarrow \infty} H_n-\log(n) = 0.577215664901532 \ldots,$$
 +
where $H_n$ denotes the $n$th [[harmonic number]].
 +
 
 +
=Properties=
 +
[[The Euler-Mascheroni constant exists]]<br />
 +
[[Reciprocal gamma written as an infinite product]]<br />
 +
[[Exponential integral Ei series]]<br />
 +
 
 +
=Further properties=
 +
The Euler-Mascheroni constant appears in the definition of...
 +
#the [[hyperbolic cosine integral]]
 +
#the [[Barnes G]] function
 +
 
 +
=See Also=
 +
[[Meissel-Mertens constant]]
 +
 
 +
=External links=
 +
[http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Collection of formulae for Euler's constant g]<br />
 +
 
 +
=References=
 +
* {{BookReference|A course of modern analysis|1920|Edmund Taylor Whittaker|author2=George Neville Watson|edpage=Third edition|prev=Gamma|next=Reciprocal gamma written as an infinite product}}: $\S 12 \cdot 1$
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Reciprocal gamma written as an infinite product|next=findme}}: §1.1 (4)
 +
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Harmonic number}}: $7.(1)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Limit of x^a log(x)=0|next=x/(1+x) less than log(1+x)}}: $4.1.32$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3

Latest revision as of 20:57, 3 March 2018

The Euler-Mascheroni constant is the number $\gamma$ defined by the formula $$\gamma = \lim_{n \rightarrow \infty} H_n-\log(n) = 0.577215664901532 \ldots,$$ where $H_n$ denotes the $n$th harmonic number.

Properties

The Euler-Mascheroni constant exists
Reciprocal gamma written as an infinite product
Exponential integral Ei series

Further properties

The Euler-Mascheroni constant appears in the definition of...

  1. the hyperbolic cosine integral
  2. the Barnes G function

See Also

Meissel-Mertens constant

External links

Collection of formulae for Euler's constant g

References