Difference between revisions of "Prime counting"
From specialfunctionswiki
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula | The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula | ||
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$ | $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$ | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Primecountingplot.png|Graph of $\pi(x)$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= | ||
− | + | [[Prime number theorem, pi and x/log(x)]]<br /> | |
− | + | [[Prime number theorem, logarithmic integral]]<br /> | |
− | + | ||
− | < | + | =References= |
− | < | + | [http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem] |
− | + | ||
− | + | [[Category:SpecialFunction]] | |
+ | |||
+ | {{:Number theory functions footer}} |
Latest revision as of 06:35, 22 June 2016
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
Properties
Prime number theorem, pi and x/log(x)
Prime number theorem, logarithmic integral
References
Newman's short proof of the prime number theorem