Difference between revisions of "Derivative of secant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\csc$$(x)=-$$\cot$$(x)...")
 
(Proof)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of cosecant|Proposition]]:</strong> $\dfrac{d}{dx}$[[Cosecant|$\csc$]]$(x)=-$[[Cotangent|$\cot$]]$(x)\csc(x)$
+
The following formula holds:
<div class="mw-collapsible-content">
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z)=\tan(z)\sec(z),$$
<strong>Proof:</strong> █
+
where $\sec$ denotes the [[secant]] and $\cot$ denotes the [[cotangent]].
</div>
+
 
</div>
+
==Proof==
 +
From the definition of secant,
 +
$$\sec(z) = \dfrac{1}{\cos(z)},$$
 +
and so using the [[quotient rule]], the [[derivative of cosine]], and the definition of [[tangent]],
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{1}{\cos(z)} = \dfrac{\sin(z)}{\cos^2(z)}=\tan(z)\sec(z),$$
 +
as was to be shown. $\blacksquare$
 +
 
 +
==References==
 +
*{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of cosecant|next=Derivative of cotangent}}: $4.3.109$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 00:34, 26 April 2017

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z)=\tan(z)\sec(z),$$ where $\sec$ denotes the secant and $\cot$ denotes the cotangent.

Proof

From the definition of secant, $$\sec(z) = \dfrac{1}{\cos(z)},$$ and so using the quotient rule, the derivative of cosine, and the definition of tangent, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{1}{\cos(z)} = \dfrac{\sin(z)}{\cos^2(z)}=\tan(z)\sec(z),$$ as was to be shown. $\blacksquare$

References