Difference between revisions of "Arcsinh"
From specialfunctionswiki
(→Properties) |
|||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | [[ | + | __NOTOC__ |
+ | The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by | ||
+ | $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ | ||
+ | where $\log$ denotes the [[logarithm]]. | ||
− | <center>{{:Inverse hyperbolic trigonometric functions footer}} | + | <div align="center"> |
+ | <gallery> | ||
+ | File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$. | ||
+ | File:Complexarcsinhplot.png|[[Domain coloring]] of of $\mathrm{arcsinh}$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Derivative of arcsinh]]<br /> | ||
+ | [[Antiderivative of arcsinh]]<br /> | ||
+ | |||
+ | =See Also= | ||
+ | [[Arcsin]] <br /> | ||
+ | [[Sine]] <br /> | ||
+ | [[Sinh]] | ||
+ | |||
+ | =References= | ||
+ | [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_86.htm Abramowitz&Stegun] | ||
+ | |||
+ | {{:Inverse hyperbolic trigonometric functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 23:28, 11 December 2016
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.
Domain coloring of of $\mathrm{arcsinh}$.
Properties
Derivative of arcsinh
Antiderivative of arcsinh