Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Complex ArcSinh.jpg|500px]]
+
__NOTOC__
 +
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by
 +
$$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$
 +
where $\log$ denotes the [[logarithm]].
  
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>
+
<div align="center">
 +
<gallery>
 +
File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$.
 +
File:Complexarcsinhplot.png|[[Domain coloring]] of of $\mathrm{arcsinh}$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
[[Derivative of arcsinh]]<br />
 +
[[Antiderivative of arcsinh]]<br />
 +
 
 +
=See Also=
 +
[[Arcsin]] <br />
 +
[[Sine]] <br />
 +
[[Sinh]]
 +
 
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_86.htm Abramowitz&Stegun]
 +
 
 +
{{:Inverse hyperbolic trigonometric functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 23:28, 11 December 2016

The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.

Properties

Derivative of arcsinh
Antiderivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

Inverse hyperbolic trigonometric functions