Difference between revisions of "Bateman F"
From specialfunctionswiki
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Bateman polynomials are | + | The Bateman polynomials $F_n$ are defined for $n=0,1,2,\ldots$ by the formula |
− | $$ | + | $$F_n(z) = {}_3F_2 \left( -n, n+1, \dfrac{z+1}{2}; 1,1;1 \right),$$ |
− | where ${} | + | where ${}_3F_2$ denotes the [[generalized hypergeometric function]]. The first few Bateman polynomials are |
+ | $$\begin{array}{l|l} | ||
+ | n & F_n(z) \\ | ||
+ | \hline | ||
+ | 0 & 1 \\ | ||
+ | 1 & -z \\ | ||
+ | 2 & \dfrac{3}{4}z^2+\dfrac{1}{4} \\ | ||
+ | 3 & -\dfrac{5}{12}z^3-\dfrac{7}{12}z^2 \\ | ||
+ | 4 & \dfrac{35}{192}z^4 + \dfrac{65}{96}z^2+\dfrac{9}{64} \\ | ||
+ | 5 & -\dfrac{21}{320}z^5 - \dfrac{49}{96}z^3 - \dfrac{407}{960}z \\ | ||
+ | \vdots & \vdots | ||
+ | \end{array}$$ | ||
=Properties= | =Properties= | ||
− | < | + | [[Generating relation for Bateman F]]<br /> |
− | + | [[Three-term recurrence for Bateman F]]<br /> | |
− | + | [[Orthogonality of Bateman F on R]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
=References= | =References= | ||
− | + | * {{PaperReference|Some Properties of a certain Set of Polynomials|1933|Harry Bateman|prev=findme|next=findme}} $3.$ | |
+ | * {{PaperReference|The Polynomial Fn(x)|1934|Harry Bateman}} | ||
+ | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Generating relation for Bateman F}}: $148. (1)$ | ||
{{:Orthogonal polynomials footer}} | {{:Orthogonal polynomials footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 11:57, 10 October 2019
The Bateman polynomials $F_n$ are defined for $n=0,1,2,\ldots$ by the formula $$F_n(z) = {}_3F_2 \left( -n, n+1, \dfrac{z+1}{2}; 1,1;1 \right),$$ where ${}_3F_2$ denotes the generalized hypergeometric function. The first few Bateman polynomials are $$\begin{array}{l|l} n & F_n(z) \\ \hline 0 & 1 \\ 1 & -z \\ 2 & \dfrac{3}{4}z^2+\dfrac{1}{4} \\ 3 & -\dfrac{5}{12}z^3-\dfrac{7}{12}z^2 \\ 4 & \dfrac{35}{192}z^4 + \dfrac{65}{96}z^2+\dfrac{9}{64} \\ 5 & -\dfrac{21}{320}z^5 - \dfrac{49}{96}z^3 - \dfrac{407}{960}z \\ \vdots & \vdots \end{array}$$
Properties
Generating relation for Bateman F
Three-term recurrence for Bateman F
Orthogonality of Bateman F on R
References
- Harry Bateman: Some Properties of a certain Set of Polynomials (1933)... (previous)... (next) $3.$
- Harry Bateman: The Polynomial Fn(x) (1934)
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $148. (1)$