Difference between revisions of "Relationship between Lerch transcendent and Lerch zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\Phi(...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[:Relationship between Lerch transcendent and Lerch zeta|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\Phi(e^{2\pi i \lambda},z,a)=L(\lambda,a,z),$$
 
$$\Phi(e^{2\pi i \lambda},z,a)=L(\lambda,a,z),$$
 
where $\Phi$ denotes the [[Lerch transcendent]] and $L$ denotes the [[Lerch zeta function]].
 
where $\Phi$ denotes the [[Lerch transcendent]] and $L$ denotes the [[Lerch zeta function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 16:34, 20 June 2016

Theorem

The following formula holds: $$\Phi(e^{2\pi i \lambda},z,a)=L(\lambda,a,z),$$ where $\Phi$ denotes the Lerch transcendent and $L$ denotes the Lerch zeta function.

Proof

References