Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
The $\mathrm{arcsinh}$ function is the inverse function of the [[sinh|hyperbolic sine]] function defined by
+
__NOTOC__
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
+
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by
 +
$$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$
 +
where $\log$ denotes the [[logarithm]].
  
[[File:Complex ArcSinh.jpg|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$.
 +
File:Complexarcsinhplot.png|[[Domain coloring]] of of $\mathrm{arcsinh}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Derivative of arcsinh]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Antiderivative of arcsinh]]<br />
$$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$
+
 
<div class="mw-collapsible-content">
+
=See Also=
<strong>Proof:</strong>
+
[[Arcsin]] <br />
</div>
+
[[Sine]] <br />
</div>
+
[[Sinh]]
 +
 
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_86.htm Abramowitz&Stegun]
 +
 
 +
{{:Inverse hyperbolic trigonometric functions footer}}
  
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>
+
[[Category:SpecialFunction]]

Latest revision as of 23:28, 11 December 2016

The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.

Properties

Derivative of arcsinh
Antiderivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

Inverse hyperbolic trigonometric functions