Difference between revisions of "Q-exponential E sub q"

From specialfunctionswiki
Jump to: navigation, search
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
The $q$-exponential $E_q$ is  
+
__NOTOC__
$$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \displaystyle\sum_{k=0}^{\infty} \dfrac{z^k(1-q)^k}{(q;q)_k}=\displaystyle\sum_{k=0}^{\infty} z^k \dfrac{(1-q)^k}{(1-q^k)(1-q^{k-1})\ldots(1-q)},$$
+
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is  
where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]] and $(q;q)_k$ denotes the [[q-Pochhammer symbol|$q$-Pochhammer symbol]].
+
$$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$
 +
where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]].
 +
 
 +
=Properties=
 +
[[Meromorphic continuation of q-exponential E sub q]]<br />
 +
[[Q-difference equation for q-exponential E sub q]]<br />
 +
 
 +
=See also=
 +
[[q-Cos]]<br />
 +
[[q-exponential E sub 1/q]]<br />
 +
[[q-Sin]]<br />
 +
 
 +
=References=
 +
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=findme|next=q-Factorial}} $(3.2)$ (calls $E_q$ $\exp_q$)
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(9.5)$ (calls $E_q(x)$ $e_q^x$)
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: ($6.150$)
 +
 
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 04:27, 26 December 2016

If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.

Properties

Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q

See also

q-Cos
q-exponential E sub 1/q
q-Sin

References