Difference between revisions of "Chebyshev psi function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Chebyshev $\psi$ function is $$\psi(x) = \displaystyle\sum_{p^k \leq x} \log p = \displaystyle\sum_{n \leq x} \Lambda(n),$$ where $\Lambda$ denotes the Mangoldt functio...")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\psi(x) = \displaystyle\sum_{p^k \leq x} \log p = \displaystyle\sum_{n \leq x} \Lambda(n),$$
 
$$\psi(x) = \displaystyle\sum_{p^k \leq x} \log p = \displaystyle\sum_{n \leq x} \Lambda(n),$$
 
where $\Lambda$ denotes the [[Mangoldt function]].
 
where $\Lambda$ denotes the [[Mangoldt function]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Chebyshevpsiplotto100.png|Plot of $\psi$ on $[0,100]$.
 +
File:Chebyshevpsiplotto1000.png|Plot of $\psi$ on $[0,1000]$.
 +
</gallery>
 +
</div>
 +
 +
{{:Number theory functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 03:47, 22 June 2016

The Chebyshev $\psi$ function is $$\psi(x) = \displaystyle\sum_{p^k \leq x} \log p = \displaystyle\sum_{n \leq x} \Lambda(n),$$ where $\Lambda$ denotes the Mangoldt function.

Number theory functions