Difference between revisions of "Relationship between Struve function and hypergeometric pFq"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The followin...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
− | $$ | + | $$\mathbf{H}_{\nu}(z)=\dfrac{2(\frac{z}{2})^{\nu+1}}{\sqrt{\pi}\Gamma(\nu+\frac{3}{2})} {}_1F_2 \left( 1; \dfrac{3}{2}+\nu,\dfrac{3}{2};-\dfrac{z^2}{4} \right),$$ |
where $\mathbf{H}_{\nu}$ denotes a [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma function]], and ${}_2F_1$ denotes the [[hypergeometric pFq]]. | where $\mathbf{H}_{\nu}$ denotes a [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma function]], and ${}_2F_1$ denotes the [[hypergeometric pFq]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 13:18, 25 June 2016
Theorem
The following formula holds: $$\mathbf{H}_{\nu}(z)=\dfrac{2(\frac{z}{2})^{\nu+1}}{\sqrt{\pi}\Gamma(\nu+\frac{3}{2})} {}_1F_2 \left( 1; \dfrac{3}{2}+\nu,\dfrac{3}{2};-\dfrac{z^2}{4} \right),$$ where $\mathbf{H}_{\nu}$ denotes a Struve function, $\pi$ denotes pi, $\Gamma$ denotes the gamma function, and ${}_2F_1$ denotes the hypergeometric pFq.