Difference between revisions of "Van der Waerden function"
From specialfunctionswiki
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula | |
− | $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{ | + | $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ |
− | + | where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function. | |
− | |||
Line 11: | Line 10: | ||
</div> | </div> | ||
=Properties= | =Properties= | ||
− | + | [[van der Waerden function is continuous]] <br /> | |
− | + | [[van der Waerden function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=See Also= | =See Also= | ||
Line 30: | Line 18: | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | ||
+ | |||
+ | {{:Continuous nowhere differentiable functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 03:33, 6 July 2016
The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.
Properties
van der Waerden function is continuous
van der Waerden function is nowhere differentiable