Difference between revisions of "Secant zeta function"
From specialfunctionswiki
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | The secant zeta functions $\psi_s$ are defined by | ||
$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$ | $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$ | ||
=Properties= | =Properties= | ||
− | + | [[Absolute convergence of secant zeta function]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= | ||
− | + | * {{PaperReference|Secant zeta functions|2014|Matilde Lalín}} | |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 06:10, 16 June 2016
The secant zeta functions $\psi_s$ are defined by $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
Properties
Absolute convergence of secant zeta function