Difference between revisions of "Sine"

From specialfunctionswiki
Jump to: navigation, search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
=Definition=
 
 
The sine function $\sin \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by
 
The sine function $\sin \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by
 
$$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i},$$
 
$$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i},$$
where $e^{iz}$ denotes the [[exponential function]].
+
where $e^{iz}$ denotes the [[exponential]].
  
 
<div align="center">
 
<div align="center">
Line 10: Line 8:
 
File:Sineplot.png|Graph of $\sin$ on $[-2\pi,2\pi]$.
 
File:Sineplot.png|Graph of $\sin$ on $[-2\pi,2\pi]$.
 
File:Complexsineplot.png|[[Domain coloring]] of $\sin$.
 
File:Complexsineplot.png|[[Domain coloring]] of $\sin$.
 +
File:Trig Functions Diagram.svg|Trigonometric functions diagram using the unit circle.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
Line 35: Line 34:
 
[[Cosecant]]<br />
 
[[Cosecant]]<br />
 
[[Sinh]] <br />
 
[[Sinh]] <br />
 +
 +
=External links=
 +
[http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function]<br />
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral from 0 to infinity of cos(mt)/(1+t^2) dt equals (pi/2) e^(-m)|next=Cosecant}}: 4.3.147
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Cosine}}: $4.3.1$
[http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function]
 
  
<center>{{:Trigonometric functions footer}}</center>
+
{{:Trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 17:34, 1 July 2017

The sine function $\sin \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i},$$ where $e^{iz}$ denotes the exponential.

Properties

Derivative of sine
Pythagorean identity for sin and cos
Taylor series of sine
Weierstrass factorization of sine
Euler's reflection formula for gamma
Beta in terms of sine and cosine
Relationship between sine and hypergeometric 0F1
Relationship between spherical Bessel j sub nu and sine
Relationship between sin and sinh
Relationship between sinh and sin
Relationship between sine, Gudermannian, and tanh
Relationship between tanh, inverse Gudermannian, and sin

Videos

[1]

See Also

Arcsin
Arcsinh
Cosecant
Sinh

External links

The sine product formula and the gamma function

References

Trigonometric functions