Difference between revisions of "Value of polygamma at 1/2"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)} \left( \dfrac{1}{2} \right) = (-1)^{m+1} m! \left( 2^{m+1}-1 \right) \zeta(m+1),$$ where $\psi^{(m)}...") |
(→References) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at positive integer|next=}}: 6.4.4 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at positive integer|next=Value of derivative of trigamma at positive integer plus 1/2}}: $6.4.4$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:45, 17 March 2017
Theorem
The following formula holds for $m=1,2,3,\ldots$: $$\psi^{(m)} \left( \dfrac{1}{2} \right) = (-1)^{m+1} m! \left( 2^{m+1}-1 \right) \zeta(m+1),$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial, and $\zeta(m+1)$ denotes the Riemann zeta.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.4.4$