Difference between revisions of "Polygamma reflection formula"
From specialfunctionswiki
m (Tom moved page Polygamma reflection relation to Polygamma reflection formula) |
(→References) |
||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Polygamma recurrence relation|next=Polygamma multiplication formula}}: $6.4.7$ | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:46, 17 March 2017
Theorem
The following formula holds: $$(-1)^m \psi^{(m)}(1-z)-\psi^{(m)}(z)=\pi \dfrac{\mathrm{d}^m}{\mathrm{d}z^m} \cot(\pi z),$$ where $\psi^{(m)}$ denotes the polygamma, $\pi$ denotes pi, and $\cot$ denotes the cotangent.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.4.7$