Difference between revisions of "Jacobi theta 1"
From specialfunctionswiki
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_1$ function is defined by | Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_1$ function is defined by | ||
− | $$\vartheta_1(z,q)=2q^{\frac{1}{4}} \displaystyle\sum_{k=0}^{\infty} (-1)^k q^{k(k+1)} \sin(2k+1)z,$$ | + | $$\vartheta_1(z,q)=2q^{\frac{1}{4}} \displaystyle\sum_{k=0}^{\infty} (-1)^k q^{k(k+1)} \sin((2k+1)z),$$ |
where $\sin$ denotes the [[sine]] function. | where $\sin$ denotes the [[sine]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Jacobitheta1,q=0.5plot.png|Graph of $\vartheta_1(z,\frac{1}{2})$. | ||
+ | File:Complexjacobitheta1,q=0.5plot.png|Domain coloring of $\vartheta_1 \left(z,\frac{1}{2} \right)$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= | ||
Line 10: | Line 17: | ||
[[Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3]]<br /> | [[Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3]]<br /> | ||
[[Derivative of Jacobi theta 1 at 0]]<br /> | [[Derivative of Jacobi theta 1 at 0]]<br /> | ||
+ | [[Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines]]<br /> | ||
− | = | + | =References= |
− | + | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Jacobi theta 2}}: $164. (1)$ | |
− | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Jacobi theta 2}}: $16.27.1$ | |
− | |||
− | + | {{:Jacobi theta footer}} | |
− | |||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 20:23, 25 June 2017
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_1$ function is defined by $$\vartheta_1(z,q)=2q^{\frac{1}{4}} \displaystyle\sum_{k=0}^{\infty} (-1)^k q^{k(k+1)} \sin((2k+1)z),$$ where $\sin$ denotes the sine function.
Properties
Squares of theta relation for Jacobi theta 1 and Jacobi theta 4
Squares of theta relation for Jacobi theta 2 and Jacobi theta 4
Squares of theta relation for Jacobi theta 3 and Jacobi theta 4
Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3
Derivative of Jacobi theta 1 at 0
Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines
References
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $164. (1)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $16.27.1$